翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

primitive element theorem : ウィキペディア英語版
primitive element theorem
In field theory, the primitive element theorem or Artin's theorem on primitive elements is a result characterizing the finite degree field extensions that possess a primitive element, or simple extensions. It says that a finite extension is simple if and only if there are only finitely many intermediate fields. In particular, finite separable extensions are simple.
== Terminology ==
Let E\supseteq F be a finite field extension. An element \alpha\in E is said to be a ''primitive element'' for E\supseteq F when
:E=F(\alpha).
In this situation, the extension E\supseteq F is referred to as a ''simple extension''. Then every element ''x'' of ''E'' can be written in the form
:x=f_^+\cdots+f_1+f_0,
where f_i\in F for all ''i'', and \alpha\in E is fixed. That is, if E\supseteq F is separable of degree ''n'', there exists \alpha\in E such that the set
:\\}
is a basis for ''E'' as a vector space over ''F''.
For instance, the extensions \mathbb(\sqrt)\supseteq \mathbb and \mathbb(x)\supseteq \mathbb are simple extensions with primitive elements \sqrt and ''x'', respectively (\mathbb(x) denotes the field of rational functions in the indeterminate ''x'' over \mathbb).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「primitive element theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.